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The construction of stratified designs in R with the package stratification 
Sophie Baillargeon and Louis-Paul Rivest 1 

Abstract 
This paper introduces a R-package for the stratification of a survey population using a univariate stratification variable X and 
for the calculation of stratum sample sizes. Non iterative methods such as the cumulative root frequency method and the 
geometric stratum boundaries are implemented. Optimal designs, with stratum boundaries that minimize either the CV of 
the simple expansion estimator for a fixed sample size n or the n value for a fixed CV can be constructed. Two iterative 
algorithms are available to find the optimal stratum boundaries. The design can feature a user defined certainty stratum 
where all the units are sampled. Take-all and take-none strata can be included in the stratified design as they might lead to 
smaller sample sizes. The sample size calculations are based on the anticipated moments of the survey variable Y, given the 
stratification variable X. The package handles conditional distributions of Y given X that are either a heteroscedastic linear 
model, or a log-linear model. Stratum specific non-response can be accounted for in the design construction and in the 
sample size calculations. 
 
Key Words: Linear models; Log-linear models; Optimal stratification; Survey sampling; Take-all stratum; Take-none 

stratum. 
 
 

1. Introduction 
 

The establishment of strata and the planning of a strati-
fied design have been important topics in survey sampling, 
since the pioneering contributions of Dalenius more than 
sixty years ago. This work is concerned with univariate 
stratification where the strata are constructed using a posi-
tive stratification variable X  known for all the units of the 
population. X  is assumed to be related to the survey vari-
able .Y  Stratum h  contains all the units with an X -value 
in the interval 1[ , )h hb b−  for = 1, ,h L…  such that 0 =b  
min X  and = max 1,Lb X +  where min X  and max X  
are respectively the minimum and the maximum values of 
the stratification variable. 

The determination of optimal stratum boundaries has a 
long history, see chapter 5A of Cochran (1977). The cu-
mulative root frequency method (cum )f  of Dalenius and 
Hodges (1959) provides an approximate solution to this 
problem. Instances where X  has a skewed distribution are 
frequent in business surveys and have been given a special 
emphasis. Gunning and Horgan (2004) proposed a geo-
metric stratification method and Hidiroglou (1986) argued 
that the large units should be put in a take-all stratum. 
Rather than relying on an approximate method for con-
structing the strata, Lavallée and Hidiroglou (1988) sug-
gested an iterative algorithm that gives the optimal bound-
aries for a particular X  variable. Their algorithm sometimes 
fails to converge (Detlefsen and Veum 1991) and Slanta and 
Krenzke (1996) have shown that in some cases the optimal 
boundaries are not uniquely defined. Alternative methods, 
such as the search algorithm of Kozak (2004), have been 

proposed to alleviate some of these difficulties. The assump-
tion that the survey variable Y  is the same as the stratifi-
cation variable X  is not realistic when calculating sample 
sizes and several authors, including Dayal (1985) and 
Sigman and Monsour (1995), proposed to allocate the 
sample to the strata on the basis of the anticipated moments 
of Y  knowing that X  is in 1[ , ).h hb b−  Sweet and Sigman 
(1995) and Rivest (1999, 2002) suggested using these 
anticipated moments in the stratification algorithm of 
Lavallée and Hidiroglou (1988). Recently, Baillargeon and 
Rivest (2009) showed that putting the small units in a take-
none stratum, which is not sampled, might reduce the sam-
ple size needed to reach a predetermined precision level. 

This article introduces the R-package stratification that 
implements most of the methods presented above. It pro-
vides a friendly computer environment to build stratified 
designs and to evaluate their performance on some real 
populations. This package is presented by revisiting exam-
ples in the stratification literature selected to illustrate its 
important features. The four functions of stratification with 
the prefix strata construct stratified sampling designs. 
These functions are strata.cumrootf, strata.geo, 
strata.LH, and strata.bh. The first two implement the 
simple cum f  and geometric stratification methods. The 
function strata.LH derives optimal stratified sampling 
plans using iterative algorithms while the last function 
handles user defined stratum boundaries. These four func-
tions construct strata, determine stratum sample sizes and 
calculate the precision of the simple expansion estimator sy  
of ,Y  the population mean of some survey variable Y  
related to the stratification variable .X  
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The four strata-functions use Hidiroglou and Srinath’s 
(1993) rule to allocate the n  units in the sample to the 
strata. The stratum sample sizes are proportional to 2 1q

hN  
22 32 ,qq

h yhY S  where hN  is the size of stratum ,h  and hY  
and 2

yhS  are the anticipated mean and variance of Y  in 
stratum .h  In the strata-functions, an allocation rule is 
specified by the argument alloc that contains the expo-
nents 1 2 3( , , );q q q  Neyman’s allocation corresponds to 
alloc=c(1/2,0,1/2). A strata-function takes as an in-
put the population vector of the stratification variable ,X  
the number of strata Ls, and a total sample size n  or a target 
CV for the simple expansion estimator .sy  Its output is an 
R-object of class “strata” that defines a stratified design. It 
contains a set of strata determined by their upper boundaries 
{ }hb  and stratum population and sample sizes, hN  and .hn  
There is a fifth function in stratification called var.strata 
that takes as an input an R-object of class strata and a popu-
lation vector of a survey variable Y  and returns the variance 
of sy  for the input variable Y  and the input stratified design. 

The text contains R instructions to be typed in an R com-
mand window; these lines start with >. It also presents out-
puts printed in an R command window. A special typeface 
allows an easy identification of these R instructions and 
print-outs in the text. The appendix contains a summary 
table that lists all the possible arguments of the five strati-
fication functions. When using this package, the R-instruc-
tion help(stratification) calls a clickable help file that 
provides detailed information on the package and examples 
that can be pasted in a command window.  

2. Basic stratification methods  
This section discusses two elementary stratification meth-

ods, the cumulative root frequency method of Dalenius and 
Hodges (1959) and the geometric method of Gunning and 
Horgan (2004). These two methods are exact; they do not 
rely on an iterative algorithm. Throughout this section 

= ,Y X  so that the variance of sy  is evaluated using the 
values of the stratification variable .X  Using the same 
variable to stratify a population and to evaluate the preci-
sion of survey estimates might underestimate their vari-
ances. The calculation of variances when Y X≠  is con-
sidered in Section 4.  
2.1 Cumulative root frequency method  

This stratification algorithm, presented in chapter 5A 
of Cochran (1977), is implemented by the function 
strata.cumrootf. Its arguments are x, the population 
vector of the stratification variable, nclass the number of 
bins of equal size for the x-variable, a target CV for sy  or a 
predetermined sample size n, the number of strata Ls, and 
an allocation rule alloc. This algorithm pools the nclass 
bins into Ls strata in such a way that the sums of the square 

roots of the bin frequencies are approximately equal for the 
Ls strata. 

As an illustration, consider the proportion of industrial 
loans of =N 13,435 banks used in Cochran (1961). We 
stratify this population and evaluate the sample size needed 
for sy  to have a CV of 5% when Neyman allocation is 
used. The following R-code creates the vector of the strati-
fication variable loans from Table 2 of McEvoy (1956). 
The function strata.cumrootf is then applied to the 
loans variable. Following Table 2 of Cochran (1961), 
nclass is set to 20 so that the strata will be created using 20 
bins and Ls=3 strata will be constructed. The output is 
placed in cum, an R-object of class strata. Typing cum or 
print(cum) in the R command window prints details of the 
sampling plan. The input arguments, either the default or as 
specified by the user, appear first. Then stratum information 
is provided such as boundaries, sizes hN  and sample sizes 

.hn  The third part of the print-out provides information 
about the sampling properties of .sy   
> values <- c(seq(0.5, 9.5, 1), seq(12.5, 97.5, 5)) 
> nrep <- c(1985, 261, 339, 405, 474, 478, 506, 569, 464, 499, 
 2157, 1581, 1142, 746, 512, 376, 265, 207, 126, 107, 82, 50, 
 39, 25, 16, 19, 2, 3) 
> loans <- rep(values, nrep) 
> cum <- strata.cumrootf(x = loans, nclass = 20, CV = 0.05,  
 Ls = 3, alloc = c(0.5, 0, 0.5)) 
> cum 
 
Given arguments:  
x = loans 
nclass = 20, CV = 0.05, Ls = 3 
allocation : q1 = 0.5, q2 = 0, q3 = 0.5 
model = none 
 
Strata information: 

rh | bh anticip.Mean anticip.var Nh nh fh
Stratum 1 1 | 10.2 4.12 10.46 5980 14 0.00
Stratum 2 1 | 29.6 17.92 27.74 5626 20 0.00
Stratum 3 1 | 98.5 44.47 165.83 1829 16 0.01
Total 
 

13435 50 0.00

Total sample size: 50 
Anticipated population mean: 15.39408 
Anticipated CV: 0.0494897   

In the Given arguments, model=none means that the 
sampling properties of ,sy  presented at the end of the print-
out, are evaluated at = ,Y X  that is for the loans variable. 
Its mean is 15.39408 and the anticipated CV of 0.0494897 is 
that of the estimator sy  of the mean of the variable loans 
obtained with this sampling design. The stratum boundaries 
given in this output are (10.2, 29.6, 98.5), they are equal to 
those appearing at the bottom of page 349 of Cochran 
(1961), once the rounding used for creating the vector 
loans is accounted for. In the Strata Information, hr  
refers to the stratum response rates that are discussed in 
Section 5.1. The R-object cum contains several elements 
that are listed by the command names(cum). 
 
> names(cum) 
[1] "Nh" "nh" "n" "nh.nonint""certain.info"
[6] "opti.criteria""bh" "meanh" "varh" "mean" 
[11]"stderr" "CV" "stratumID" "nclassh" "takeall" 
[16]"call" "date""args"    
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An element in the cum strata object can be printed by 
typing cum$ followed by the name of the object. For 
instance the cum$stratumID prints the stratum of each unit 
in the population. The variable cum$nclassh is specific to 
the strata.cumrootf function; it gives how the 
nclass=20 original bins have been pooled into three strata;  
> cum$nclassh 
[1] 2 4 14  

Thus, in this stratification, strata 1, 2 and 3 contain 
respectively 2, 4 and 14 of the nclass=20 original bins.  
2.2 Geometric method  

The geometric stratification method has been introduced 
by Gunning and Horgan (2004). It sets the stratum bound-
aries to /min (max / min ) ,h L

hb X X X= ×  for 1, ...,h =  
1.L −  Once the boundaries hb  are determined, the stratum 

sample size calculations are the same as those carried out in 
strata.cumrootf. 

As an illustration we stratify the four populations 
presented in Gunning et Horgan (2004), Debtors, USbanks, 
UScities, and UScolleges, into Ls=5 strata. The last three 
populations were considered in Cochran’s (1961) investi-
gations. These four populations are stored in stratification; 
the command data(Debtors) calls the first one. Rather 
than specifying a target CV we set the sample size to n =  
100 following Gunning and Horgan (2004). The following 
commands create the R-object pop1 that contains the 
stratified design for the Debtors population.  
> data(Debtors) 
> pop1 <- strata.geo(x = Debtors, n = 100, Ls = 5,  
 alloc = c(0.5, 0, 0.5))  

Table 1 summarizes the geometric stratified designs for 
the four study populations. It reproduces Table 4 of Gunning 
and Horgan (2004) partially. There are however some minor 
differences caused by different rounding strategies. More 
details about stratification rounding methods are available 
in the help file.  
Table 1 
Stratified designs for four populations with n = 100 
 

Population CV  1 2 3 4 5
Debtors 0.0359 hb  148.28 549.67 2,037.60 7,553.33
  hN  1,054 1,267 732 265 51
  hn  3 14 27 33 23
UScities 0.0145 hb  18.17 33.01 59.98 108.98
  hN  364 418 130 87 39
  hn  18 28 17 20 17
UScolleges 0.0183 hb  434.00 941.76 2,043.61 4,434.60
  hN  94 255 198 74 56
  hn  3 15 27 20 35
USbanks 0.0107 hb  118.59 200.92 340.39 576.68
  hN  114 116 64 39 24
  hn  13 20 25 18 24
 

2.3 Take-all stratum  
In Table 1, the fifth stratum for the USbanks population 

is a take-all stratum since 5 5 24.n N= =  Under Neymann 
allocation, the fifth stratum gets a sample size 5n  larger than 
the stratum size 5.N  Then strata.geo automatically 
identifies this stratum as a take-all stratum and allocates the 

5n N−  units for the first four strata using Neyman allo-
cation. This adjustment is important to have a sample size of 

100n =  as specified in the strata.geo arguments. 
To illustrate this point, we use the function strata.bh to 

make an allocation without a take-all stratum adjustment. 
This function allocates the sample and calculates the 
precision of sy  for a predetermined set of stratum bound-
aries. By setting takeall.adjust=FALSE, Neyman 
allocation is used in the five strata and since 5 5n N>  one 
has 5 5.n N=  The following R-code gets the geometric 
stratum boundaries { }hb  in the strata object adjust; it then 
uses the strata.bh function with the geometric stratum 
boundaries to get the sampling design without adjusting for 
a take-all stratum five in the noadjust strata object.  
> data(USbanks) 
> adjust <- strata.geo(x = USbanks, n = 100, Ls = 5,  
 alloc = c(0.5, 0, 0.5)) 
> noadjust <- strata.bh(x = USbanks, bh = adjust$bh,  
 n = 100, Ls = 5, alloc = c(0.5, 0, 0.5), takeall = 0,  
 takeall.adjust = FALSE)  

The two designs are presented in Table 2. Failing to 
include a take-all stratum yields a sample size of = 99,n  
smaller than the target = 100.n  In this case, the unrounded 
sample size for stratum 5 is noadjust$nh.noint[5]= 
25.40 for 5 = 24N  units. Note that when n  is large or 
when the target CV is small, it is possible to get several 
take-all strata.  
Table 2 
Stratified designs obtained with and without an automatic 
adjustment for a take-all stratum 
 

 n      1  2  3  4  5 
  hb    118.59  200.92  340.39  576.68 
  hN    114  116  64  39  24 

adjust  100 hn    13  20  25  18  24 
noadjust 99  hn    13  20  24  18  24  

2.4 Adding a take-all stratum  
We now consider the data base on = 284N  Swedish 

municipalities given in the appendix of Särndal, Swensson 
and Wretman (1992). The following instructions use the geo-
metric method to stratify this population in Ls=5 strata using 
the variable REV84, the 1984 real estate values. The power 
allocation with exponent 0.7 and alloc=c(0.35,0.35,0) 
is used. The R-object of class strata geo contains the 
stratified design. The command plot(geo) produces the 
plot presented in Figure 1. It provides a histogram of the 
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stratification variable with the stratum boundaries and a 
summary table for the stratified design.  
> data(Sweden) 
> geo <- strata.geo(x = Sweden$REV84, CV = 0.05, Ls = 5,  
 alloc = c(0.35, 0.35, 0))  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 Plot of the R-object geo  
Figure 1 shows that the geometric stratification method 

puts two of the three extreme REV84 values in a take-all 
stratum. The following Rcode creates cum a stratified 
design for this population using the cum f  method. The 
application of this stratification method is awkward since 
the bins have length {max(REV84)−min(REV84)}/50= 
1191. Considering Figure 1 most of the bins have a null 
frequency; indeed stratum 5 comprises 43 of the 50 bins. 
This design does not have a take-all stratum. To calculate 
the sample sizes obtained by requesting a take-all stratum 
one can use the function strata.bh, with the cum f  
boundaries stored in cum$bh, with the command 
takeall=1. This gives the third sampling plan in Table 3. 
The fourth sampling plan of Table 3 cum3 is created by 
setting the sample size in stratum 5 of the cum f  
design equal to its population size with the command 
cum3$nh[5]<-cum3$Nh[5]. The variance of the estimate 

sy  for the variable REV84 using this fourth sampling design 
is calculated using var.strata.  
> cum <- strata.cumrootf(x = Sweden$REV84, nclass = 50,  
 CV = 0.05, Ls = 5, alloc = c(0.35, 0.35, 0)) 
> cum2 <- strata.bh(x = Sweden$REV84, bh = cum$bh, CV = 0.05,  
 Ls = 5, takeall = 1, alloc = c(0.35, 0.35, 0)) 
> cum3 <- cum 
> cum3$nh[5] <- cum3$Nh[5] 
> cum3.var <- var.strata(cum3, y = Sweden$REV84) 
 
 
 

Table 3 
Four stratified designs for the population of Swedish municipalities 
 

Method     1  2  3  4  5 n  CV 
geometric   hN   56 134 77 15 2   

  hn   3 7 10 6 2 28 4.83 
cum f    hN   120 70 52 27 15   

  hn   7 7 9 8 10 41 4.87 
 1modif

hn  2 2 3 2 15 24 4.44 
 2modif

hn  7 7 9 8 15 46 2.29  
Table 3 highlights that the sampling fraction in the fifth 

stratum drives the value of n. The cum f  design appears 
to be less efficient than the geometric design since it 
sampling fraction in stratum 5 is 10/15 = 67%. Requesting a 
take-all stratum gives a value of n comparable to that 
obtained with the geometric design. The REV84 population 
has three outliers that were identified in Table 1. The 
geometric and cum f  stratification methods depend 
heavily on the maximum X -value; therefore before ap-
plying these techniques it might be wise to put the three 
outliers aside. This is considered in the next section. 

The simple ad hoc method to arbitrarily change the 
stratum sample sizes presented in this section can be applied 
in several situations. For instance, when some strata have 
samples of size 1, they can be increased to 2 in order to have 
an unbiased variance estimator.  
2.5 Certainty stratum  

In a stratified design it might be useful to constrain some 
units to be sampled, before constructing the strata. The 
argument certain available in the four strata-function 
makes this possible. As an example we revisit the compari-
son of the cum f  and the geometric sampling designs 
presented in Table 3. The three large municipalities high-
lighted in Figure 1 are put in a certainty stratum, and the 
N = 281 remaining municipalities are stratified into Ls=4 
strata using the two stratification methods. The R-code for 
constructing these two designs is given below. The com-
mand x=sort(Sweden$REV84) orders the municipalities by 
increasing REV84; thus the three large municipalities are 
entries 282, 283 and 284 of the sorted vector. The two R 
objects of class strata, geo_cer and cum_cer, each contain 
an element certain.info that provides information on the 
certainty stratum.  
> geo_cer <- strata.geo(x = sort(Sweden$REV84), CV = 0.05,  
 Ls = 4, alloc = c(0.35, 0.35, 0), certain = 282:284) 
> cum_cer <- strata.cumrootf(x = sort(Sweden$REV84),  
 nclass = 50, CV = 0.05, Ls = 4, alloc = c(0.35, 0.35, 0), 
 certain = 282:284) 
> cum_cer$certain.info 
  

Nc meanc 
3.00 38923.67 
 

 

Graphical Representation of the Stratified Design geo 
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In Table 4, the cum f  design is more efficient that the 
geometric design. Putting the three large municipalities in a 
certainty stratum is helpful since the sample sizes in Table 4 
are smaller than those of Table 3. The argument certain 
can force any set of units in the sample. It can be used to 
include units that are extreme for a secondary variable, 
different from the stratification variable, or that have a 
history of high volatility.  
Table 4 
Two stratified designs for the Swedish municipalities constructed 
with a certainty stratum 
 

Method     1  2  3  4  5 n CV
geometric   hN    42  116  88  35  3 
  hn    2  5  7  7  3  24  4.71 
cum f    hN    127  79  46  29  3 
  hn    3  4  4  5  3  19  4.72  

3. Optimization method  
The stratification methods introduced in Section 2 do not 

always give an optimal stratified design, that minimizes the 
sample size n  needed to reach the target CV (or minimizes 
the CV for a fixed n). This section introduces the function 
strata.LH that allows the determination of optimal 
designs. The name LH stands for Lavallée and Hidiroglou 
(1988) who pioneered the construction of optimal stratified 
designs for real life survey populations. In a stratified design 
with a take-all stratum, the variance of the simple expansion 
estimator is given by  

21
2

=1

1 1Var( ) = ,
( )

L
h

s yh
h L h h

N
y S

N n N a N

− ⎛ ⎞⎛ ⎞ −⎜ ⎟⎜ ⎟ −⎝ ⎠ ⎝ ⎠
∑  

where { }ha  is the allocation rule for setting stratum sample 
sizes. The n  that ensures a CV of c  is given by  

                      

1
2 2 2

=1
1

2 2 2 2

=1

/ ( )
= .

/

L

h yh h
h

L L

h yh
h

N S a N
n N

Y c N S N

−

−+
+

∑

∑
 (1) 

In this expression one can write 1= ( , , )Ln n b b…  to 
highlight that the value of n  depends on the stratum bound-
aries. The strata.LH function tries to find the optimal 
boundaries hb  that minimize 1 1( , , ).Ln b b −…  Two minimi-
zation algorithms are available, either Sethi’s (1963) algo-
rithm as implemented by Lavallée and Hidiroglou (1988) 
with algo="Sethi" or Kozak’s (2004) random search 
algorithm with algo="Kozak". The latter is the default 
option. This section assumes = ;Y X  it does not distin-
guish the stratification from the survey variable. 

3.1 Sethi (1963) example with the normal 
distribution  

A classical problem is to determine the optimal bound-
aries for L  strata in an infinite population from a known 
distribution. For instance, Sethi (1963) derived the optimal 
bounds for the normal and the 2

30χ  distributions. To obtain 
approximate solutions, one can run the strata.LH function 
on a large Monte Carlo population simulated from the 
known distribution, without requesting a take-all stratum. In 
(1), one has 2/ 0hN N ≈  and the optimal boundaries are the 
same for any target CV .c  

The following R-code simulates populations of size 510  
from the (10, 1)N  and the 2

30χ  distributions. Observe that 
stratification requires the stratification variable to be non 
negative, so that it would not work on standard normal 
deviates. By subtracting 10 from the (10, 1)N  bound-
aries, we get the ones for a (0, 1).N  The calculations are 
done with the strata.LH function with the argument 
algo="Sethi" and with takeall=0, so that a take-all 
stratum is not requested.  
> z <- rnorm(100000, 10) 
> zl5 <- strata.LH(x = z, CV = 0.001, Ls = 5,  
 alloc = c(0.5, 0, 0.5), takeall = 0, algo = "Sethi") 
> zl5$bh - 10  
[1] -1.1247340 -0.3480829 0.3297044 1.0979017 
 
> x30 <- rchisq(100000, 30) 
> xl5 <- strata.LH(x = x30, CV = 0.01, Ls = 5,  
 alloc = c(0.5, 0, 0.5), takeall = 0, algo = "Sethi") 
> xl5$bh  
[1] 22.82148 28.12303 33.38642 40.20165  

In Table 5, the agreement between the true bounds 
reported in Table 8 of Sethi (1963) and the Monte Carlo 
bounds is quite good. This approach could be used to 
calculate the optimal stratum boundaries for an arbitrary 
distribution, see for instance Khan, Nand, and Ahmad 
(2008). 
 
Table 5 
Comparison of Sethi’s (1963) optimal stratum boundaries and 
of the approximate boundaries obtained with stratification 
  

          stratification’s results          Sethi’s results  
 L  1  2  3  4   1  2  3  4 
 2  -0.007     0.00 

hb  3  -0.531  0.567     -0.55  0.55 
(0,1)N 4  -0.883  -0.008  0.864    -0.88  0.00  0.88 

 5  -1.125  -0.348  0.330  1.098   -1.11  -0.34  0.34  1.11

 2  30.674     30.6 

hb  3  26.535  35.141     26.0  35.0 
2
30χ  4  24.340  30.733  38.179    24.0  30.6  38.0 
 5  22.821  28.123  33.386  40.202   22.0  28.0  33.0  40.0  

3.2 Gunning and Horgan (2004) example  
In their original proposal, Lavallée and Hidiroglou 

(1988) always had a take-all stratum for a skewed survey 
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variable. To show that this was not always mandatory, 
Gunning and Horgan (2004) derived the optimal stratified 
designs featuring a take-all stratum for the four populations 
considered in Table 1. The findings of their Table 7 (with 
slight corrections due to rounding errors) is reproduced in 
Table 6. Comparing Tables 1 and 6, one sees that the opti-
mal designs featuring a take-all stratum have n -values 
larger than 100 for three populations out of four. The op-
timal design is superior to the geometric design only for the 
Debtors population. The R-code to run Sethi’s algorithm on 
the Debtors population is given below.  
> pop1LH <- strata.LH(x = Debtors, CV = 0.0359, Ls = 5,  
 alloc = c(0.5, 0, 0.5), takeall = 1, algo = "Sethi")   

In Table 6, one would expect the optimal designs 
obtained through an iterative algorithm to have a smaller 
sample size than the ad hoc geometric designs. This fails to 
occur for three populations. This might be caused by a 
failure of Sethi’s algorithm to find the true minimum value 
for n. To check this, we reran the programs to produce Table 
6 with the argument algo="Kozak". The sample sizes n  
are given in the second column of Table 7. Kozak’s 
algorithm finds a smaller n -value that Sethi’s for three of 
the four populations. This highlights the weakness of Sethi’s 
algorithm for real populations. The second column of Table 
7 has n  values larger than 100 for two of the four popu-
lations. In these cases, the geometric design might be better 
because a take-all stratum is not required. To check this we 
reran Kozak’s algorithm wihout a take-all stratum, i.e., with 
takeall=0. The results are reported in the third column of 
Table 7. For the Debtors and the UScolleges populations, 
taking away the take-all stratum reduces the sample size n . 
Still, for the UScities population, Kozak’s algorithm does 
worst than the geometric design. It failed to find the true 
minimum value of n  with the default arguments that 
control its random search. To better understand the re-
sults of Table 7, we now present in more details the 
selection of initial stratum boundaries in strata.LH and 
the parameters that control the random search with 
algo="Kozak".  
Table 6 
Optimal stratified designs featuring a take-all stratum obtained 
with Sethi’s algorithm for the 4 populations of Table 1 
 

Population n  CV   1  2  3  4  5 
Debtors 93 0.0359 hb   349.33  1,190.16  3,482.98 10,322.50 
   hN   1,856  991  350 146 26 
   hn   13  17  17 20 26 
UScities 137 0.0145 hb   14.72  21.62  35.59 80.47 
   hN   189  270  336 164 79 
   hn   4  8  16 30 79 
UScolleges 107 0.0183 hb   512.32  869.76  1,577.23 3,668.85 
   hN   133  180  185 110 69 
   hn   4  6  10 18 69 
USbanks 104 0.0107 hb   99.37  129.60  181.94 317.36 
   hN   70  66  82 65 74 

   hn   4  4  7 15 74 

Table 7 
Sample size n  for three optimal designs and four populations 
 

Population  algo=Sethi  algo=Kozak algo=Kozak 
takeall=1 takeall=1  takeall=0 

Debtors 93  92  82 
UScities 137  114  123 
UScolleges 107  107  95 
USbanks 104  88  88  

3.3 Customization of the algorithms  
The default initial stratum boundaries for the two 

iterative algorithms are the arithmetic starting point of 
Gunning and Horgan (2007), with = min (maxhb X X+ −  
min ) / ,X h L×  for = 1, , 1h L −… . In Table 7, this 
choice is questionable and the geometric stratum bound-
aries would have been closer to the true optimal boundaries. 
In strata.LH, the argument initbh= allows to specify a 
vector of 1L −  initial boundary values. The maximum 
number of iterations can be changed with the maxiter 
element of the algo.control argument. 

Kozak’s algorithm was first proposed in Kozak (2004), 
see also Kozak and Verma (2006). It uses a random 
search that selects the 1L −  stratum boundaries among 
the sorted values of ,X  with the duplicates discarded. At 
one iteration, it randomly picks a number d  in the set 
{-maxstep,-maxstep+1,…,maxstep} and one of the 

1L −  boundaries. Then it moves the selected boundary by 
d  positions in the vector of sorted X -values. If (1) is 
smaller with the new boundary it is kept, otherwise it is 
discarded and the boundaries are left unchanged at this 
iteration. The algorithm stops when the boundaries have not 
been changed for maxstill consecutive iterations. The 
default values are maxstep=3 and maxstill=100. Two 
consecutive runs of Kozak’s algorithm might lead to 
different designs because of the random nature of this 
algorithm. The strata.LH runs the algorithm rep times 
and the information for each run is contained in the 
rep.detail element of R-objects of class strata; the 
default value is rep=3. If the rep runs lead to different 
designs, then the tuning parameters of the algorithm can be 
changed. One can also use use rep="change" which runs 
the algorithm 27 times with different starting and maxstep 
values. An additional example illustrating an instance where 
Kozak’s algorithm does not reach a global minimum is 
presented in the Appendix. 

With uN  unique X -values, there are approximately 
1

1
uN

L
−
−

( )  possible sets of stratum boundaries. If this number is 
smaller than minsol all the possible sets of strata are tried, 
rather than carrying out a random search. The default value 
is minsol=1000. The elements maxstep, maxstill, 
minsol and rep belong to the algo.control argument. In 
Table 7, we were unable to improve the geometric stratified 
design for the UScities population. The command to run 
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Kozak’s algorithm 27 times with various tuning parameters 
is given below.  
> data(UScities)  
> pop2LHrep <- strata.LH(x = UScities, CV = 0.0145, Ls = 5, 
 alloc = c(0.5, 0, 0.5), takeall = 0, algo = "Kozak",  
 algo.control = list(rep = "change"))   

This command takes a few seconds to run and yields a 
stratifed design with = 100,n  similar to that presented in 
Table 1 for the UScities.  
3.4 Designs with a predetermined sample size n  

With Kozak’s algorithm it is possible to find the 
boundaries that minimize the CV of sy  for a fixed sample 
size n  rather than minimizing n  for a predetermined CV. 
As an example we revisit the stratified designs of Table 1. 
The geometric boundaries are used as initial values and the 
default Kozak algorithm is run. The R-code for the Debtors 
population is given below.  
> pop1k <- strata.LH(x = Debtors, initbh = pop1$bh, n = 100,  
 Ls = 5, alloc = c(0.5, 0, 0.5), algo = "Kozak")  

The CVs of the estimator of sy  obtained with the 
optimal stratified designs are 3.12%, 1.43%, 1.72%, and 
1.04% for the four populations as compared with 3.59%, 
1.45%, 1.83%, and 1.07% in Table 1. Thus the iterative 
algorithm allowed to reduce the CVs.  

4. Stratification with anticipated moments  
A difference between the stratification variable X  and 

the survey variable Y  can be accounted for by having a 
model for the conditional distribution of Y  given .X  In 
stratification, there is a log-linear model where 

exp( ) exp( ),Y X β= α σε  

and an heteroscedastic linear model with  
                              ,Y X X γ= α + β + σε  (2) 

and , ,α β  and γ  are real parameters specified by the user 
and ε  is a (0, 1)N  random variable. A random replace-
ment model (Rivest 1999) is also available and stratum 
specific mortality rates (Baillargeon, Rivest and Ferland 
2007) can be added to the log-linear model. 

Under these models, the anticipated mean of Y  for the 
units classified in stratum h, with 1[ , )h hX b b−∈  are  

<1

1= ( | )h i
b X bh h i h

Y E Y X
N ≤−

∑  

while the anticipated variance is  
2 2

<1

<1

1= { ( | ) ( | ) }

1 Var( | )

yh i h
b X bh h i h

i
b X bh h i h

S E Y X E Y X
N

Y X
N

≤−

≤−

−

+

∑

∑
 

where ( | )hE Y X  is the average of the predicted values 
of Y  for the units in stratum h. In strat.cumrootf, 
strata.geo and strata.bh these expressions are used to 
evaluate the sampling properties of sy  while in strata.LH, 
the minimization of (1) is carried out with anticipated 
moments. In strata.LH the stratum boundaries depend on 
the model for the relationship between X  and ;Y  they do 
not for the other strata functions.  
4.1 An example with the MU284 Swedish 

municipalities  
In Section 2.5 two stratified sampling plans were derived 

for the MU284 population with 84REV  as stratification 
variable. The R-code that follows investigates the perfor-
mance of these sampling designs for the variable 85RMT . 
The vector ord contains the position of the order statistics of 
the 84REV  variable; thus Y[ord] is the vector of the 

85RMT  variable, ordered by increasing 84REV -value.  
> data(Sweden)  
> X <- Sweden$REV84 
> Y <- Sweden$RMT85  
> ord <- order(X)  
> geo_rmt <- var.strata(geo_cer, y = Y[ord])  
> cum_rmt <- var.strata(cum_cer, y = Y[ord]) 
> c(geo_rmt$RRMSE,cum_rmt$RRMSE) 
 
[1] 0.06889558 0.07368794   

In section 2.4, the CVs of the estimator sy  for the 
stratification variable 84REV  were less than 5% for the 
cum f  and the geometric designs. When estimating the 
mean of 85,RMT  the CVs are larger than 6%. This 
emphasizes that calculating sample sizes with a stratification 
variable underestimate the n  needed to reach the target CV 
for a different survey variable. These results are reported in 
the first two designs of Table 8. Table 8 also shows the 
optimal design calculated by applying Kozak’s algorithm to 
the 84REV  variable, assuming = .Y X  

Following Rivest (2002), a log-linear model is fitted for 
the relationship between the two variables. As shown in 
Figure 2, there are outliers and the following R-code esti-
mates the parameters of the log-linear model by discarding 
the municipalities with extreme /X Y  quantiles. The 18 
discarded municipalities are represented by a star in Figure 
2. The R-code for fitting the model to the non outliers 
follows.  
> keep <- (X/Y > quantile(X/Y, 0.03)) & (X/Y < quantile(X/Y, 0.97)) 
> reg <- lm(log(Y)[keep] ~ log(X)[keep]) 
> coef(reg) 
 
(Intercept) log(X)[keep] 
-3.153025   1.058355 
 
> summary(reg)$sigma 
 
[1] 0.25677 
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Figure 2 Plot of RMT85 by REV84 from the data set Sweden  
The following code stratifies the MU284 population on 

REV84 using the cum f  and the geometric method. The 
allocation is however carried out with anticipated moments 
calculated with the log-linear regression model of RMT85 
on REV84. The strata of these two designs are the same as 
those calculated earlier. The model affects only the antici-
pated CV. It is not so for the optimal design where the 
anticipated moments are used in the stratification algorithm. 
Kozak’s algorithm might fail to find the global minimum n  
value when using anticipated moments; thus we use the 
bounds calculated with Y X=  as starting values.  
 
> geo_cer.m <- strata.geo(x = X[ord], CV = 0.05, Ls = 4,  
 alloc = c(0.35, 0.35, 0), model = "loglinear",  
 certain = (length(X) - 2):length(X), model.control = 
 list(beta = 1.058355, sig2 = 0.25677^2)) 
> geo_cer.var <- var.strata(geo_cer.m, y = Y[ord]) 
> cum_cer.m <- strata.cumrootf(x = X[ord], nclass = 50,  
 CV = 0.05, Ls = 4, alloc = c(0.35, 0.35, 0), 
 certain = (length(X) - 2):length(X), model = "loglinear", 
 model.control = list(beta = 1.058355, sig2 = 0.25677^2)) 
> cum_cer.var <- var.strata(cum_cer.m, y = Y[ord]) 
> LH <- strata.LH(x = X, CV = 0.05, Ls = 5,  
 alloc = c(0.35, 0.35, 0), takeall = 1) 
> LH.var <- var.strata(LH, y = Y) 
> LH_m <- strata.LH(x = X, CV = 0.05, Ls = 5,  
 initbh = LH$bh, alloc = c(0.35, 0.35, 0), takeall = 1,  
 model = "loglinear", model.control = list(beta = 1.058355, 
 sig2 = 0.25677^2)) 
> LH_m.var <- var.strata(LH_m, y = Y) 
 

In Table 8, sample sizes calculated with anticipated 
moments give CVs smaller than 5% for estimating the mean 

85RMT  variable. The optimal LH design requires a n  
slightly smaller than the other two. Accounting for Y X≠  
when minimizing (1) gives a larger take-all stratum since its 
size increased from 4 to 5 when using the anticipated 
moments. 

Finally observe that the arguments model and 
model.control can be used with var.strata. For the 
geometric design considered in this section, one can get 
results very similar to those obtained with the argument 

y = Y. As shown below, the model yields a CV of 6.894% as 
compared with 6.890% obtained with the original 85RMT -
variable. For the cum f  method the model CV is 7.282% 
as compared to 7.369% found earlier while for the Lavallée 
Hidiroglou algorithm these two values are 7.080% and 
7.110%.  
> geo_rmt2 <- var.strata(geo_cer, model = "loglinear", 
 model.control = list(beta = 1.058355, sig2 = 0.25677^2)) 
> geo_rmt2$RRMSE 
 
[1] 0.0689368 

 
Table 8 
Three stratified designs for estimating the mean 85RMT  with 

84REV  as the stratification variable 
 

Model Method   1  2  3  4  5  n anticip.
CV

=Y X  cum f  hN  127  79  46  29  3 
  hn   3  4  4  5  3  19  7.37 
 geometric hN  42  116  88  35  3 
  hn   2  5  7  7  3  24  6.89 
 LH hN  120  82  45  33  4 
  hn   3  4  4  5  4  20  7.11 
loglinear cum f  hN  127  79  46  29  3 
  hn   6  8  9  10  3  36  4.78 
 geometric hN  42  116  88  35  3 
  hn   3  8  13  13  3  40  4.74 
 LH hN  121  81  45  32  5 
  hn   6  7  7  9  5  34  4.90 

 
4.2 Anderson, Kish and Cornell (1976) example with 

the bivariate normal distribution  
Anderson et al. (1976) investigated the optimal stratifica-

tion for Y  based on X  when ( , )X Y  has a bivariate 
normal distribution with correlation .ρ  Thus model (2) 
holds with 0, ,α = γ = β = ρ  and 2 21σ = − ρ  where X  
has a (0, 1)N  distribution. To reproduce Anderson et al. 
(1976) results, we generate a population of size N = 105 
from a (0, 1)N  distribution and select model="linear" 
(as in Section 3.1 a mean of 10 was used to prevent X  from 
being negative). For a linear model, only Kozak’s algorithm 
works. Given the special nature of the problem, the 
maxstep parameter is set to 20 and only one repetition 
(rep=1) of the algorithm is run. When there is no take-all 
stratum, the optimal stratum boundaries are independent of 
the CV, as in Section 3.1. We used CV =  0.01 in the 
calculations. 
 
> x <- rnorm(1e+05, 10) 
> bi3a <- strata.LH(x = x, CV = 0.01, Ls = 3, takenone = 0, 
 model = "linear", 
 model.control = list(beta = 0.25, sig2 = 1 - 0.25^2,  
 gamma = 0), algo.control = list(maxstep = 20, rep = 1)) 
> bi3a$bh – 10 
 
[1] -0.619354 0.604198 
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In Table 9, stratification’s results are equal to Anderson’s 
et al. (1976) findings up to nearly two decimals. This high-
lights the flexible nature of the package; it can find the 
optimal stratified design for any distribution of the stratifi-
cation variable and for some general models for the condi-
tional distribution of Y  given .X  

 
Table 9 
Comparison of Anderson et al. (1976) optimal stratum boundaries 
with the approximate boundaries obtained with stratification 
 

     stratification’s results   Anderson et al.’s results 

L    ||ρ    1   2   3   4   1   2   3   4  

 3   0.250   -0.619  0.604       -0.61   0.61     

  0.950   -0.591  0.568       -0.58   0.58     

  0.990   -0.571  0.549       -0.56   0.56     

 4   0.250   -0.984  0.004   0.985     -0.98   0.00  0.98   

  0.950   -0.930  0.009   0.942     -0.93   0.00  0.93   

  0.990   -0.902  -0.001   0.895     -0.90   0.00  0.90   

 5   0.250   -1.245  -0.377   0.387   1.251   -1.24   -0.38  0.38  1.24 

  0.950   -1.187  -0.358   0.372   1.197   -1.19   -0.37  0.37  1.19 

  0.990   -1.136  -0.344   0.353   1.144   -1.14   -0.35  0.35  1.14 

 
5. Additional features  

Baillargeon and Rivest (2009) considered additional 
aspects of a stratified design, namely stratum specific 
anticipated non-response rates and the addition of a take-
none stratum with a null sample size. This section discusses 
briefly how these additional items are handled in stratifica-
tion. Non-response needs to be accounted for when opti-
mizing for .n  A take-none stratum makes sy  biased; in this 
case the precision target is specified in terms of a Relative 
Root Mean Squared Error (RRMSE) rather than a CV. 
Formula (4.3) of Baillargeon and Rivest (2009) provides a 
generalization of (1) that includes these two features. This is 
the formula used for calculating sample sizes in the opti-
mization procedure.  
5.1 Non-response  

Non-response can be corrected a posteriori, by dividing 
the no non-response stratum sample sizes by the response 
rates. This is illustrated in the following R-code that 
considers the MRTS variable, representative of Statistics 
Canada Monthly Retail Trade Survey. Post hoc non-
response corrections are implemented in the var.strata 
function with the argument rh.postcorr=TRUE. An 
alternative is to consider response rates when allocating the 
sample to the strata. They can be specified in a strata 
function with the argument rh=. This approach penalizes 
strata with a high non-response; it typically yields a smaller 

n  value than the a posteriori corrections. This is illustrated 
in the cum f  portion of Table 10. With four strata and 
response rates of 0.8, 0.8, 0.9, 1, the a posteriori correction 
needs = 445n  to reach the target CV for the MRTS 
variable, as compared with = 444n  for an allocation that 
takes non-response into account. 
 
> data(MRTS)  
> cum <- strata.cumrootf(x = MRTS, nclass = 500, CV = 0.01,  
 Ls = 4, alloc = c(0.5, 0, 0.5))  
> cum.var <- var.strata(cum, rh = c(0.8, 0.8, 0.9, 1))  
> cum.post <- var.strata(cum, rh = c(0.8, 0.8, 0.9, 1), 
 rh.postcorr = TRUE)  
> cum_rh <- strata.cumrootf(x = MRTS, nclass = 500, CV = 0.01, 
 Ls = 4, alloc = c(0.5, 0, 0.5), rh = c(0.8, 0.8, 0.9, 1)) 

 
Non-response can also be accounted for when construc-

ting an optimal sampling design, either a posteriori or in the 
stratum construction. These two approaches are imple-
mented for the MRTS population in the following R-code. 
The higher non-response rates for the small units penalize 
the first stratum which is smaller when non-response is 
accounted for in the stratification algorithm, as can be seen 
in Table 10. Still accounting for non-response in the stratum 
construction gives a smaller n -value than an a posteriori 
correction. Table 3 of Baillargeon and Rivest (2009) pres-
ents additional examples, including both anticipated mo-
ments and non-response, of the construction of stratified 
designs for the MRTS population.  
> LH <- strata.LH(x = MRTS, CV = 0.01, Ls = 4,  
 alloc = c(0.5, 0, 0.5), takeall = 1)  
> LH.var <- var.strata(LH, rh = c(0.8, 0.8, 0.9, 1))  
> LH.post <- var.strata(LH, rh = c(0.8, 0.8, 0.9, 1), 
 rh.postcorr = TRUE)  
> LH_rh <- strata.LH(x = MRTS, CV = 0.01, Ls = 4,  
 alloc = c(0.5, 0, 0.5), takeall = 1, rh = c(0.8, 0.8, 0.9, 1))   
Table 10 
Two examples of non-response correction: Either a posteriori (post) 
or when constructing the design 
 

Method   rh     1   2   3   4   n    anticip. 
CV  

cum f    none  hN    778   742   355   125     
    hn    87   90   88   125  390  1.11  
    post

hn   109   113   98   125  445  1.00  
  given  hN    778   742   355   125     
    hn    105   108   106   125  444  1.00  
LH   none  hN    774   675   374   177     
    hn    77   65   60   177  379  1.11  
    post

hn   96   81   67   177  421  1.00  
  given  hN    675   677   449   199     
    hn    70   69   80   199  418  1.00   
5.2 Take-none stratum  

A take-none stratum with a null sample size might be 
advantageous when the population has small units with Y -
values close to 0. The precision of sy  is then measured by 
the mean squared error, Var 2

0( ) ( / ) ,s yy T N+  where 0 yT  is 
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the anticipated Y -total in the take-none stratum. Setting 
takenone=1 in the strata.LH function constructs an 
optimal design with a take-none stratum. Baillargeon and 
Rivest (2009) showed that Sethi’s algorithm does not work 
in this case and that Kozak’s algorithm should be used. 
When a take-none stratum is used, a rough bias correction 
can be implemented by dividing sy  by the proportion of the 
total of the X  variable in the take some strata. Thus the bias 
penalty in the mean square error might be too stringent and 
an alternative measure of precision, such as Var ( )sy +  

2
0( / ) ,yp T N×  could be used in the stratification algo-

rithm where p  is a number in (0, 1).  This smaller bias 
penalty can be implemented by setting the argument 
bias.penalty equal to .p  The following R-code con-
structs three optimal stratified designs for the MRTS popu-
lation, with and without a take-none stratum; the default full 
bias penalty is compared to a reduced penalty with =p 0.5.  
> data(MRTS)  
> notn <- strata.LH(x = MRTS, CV = 0.1, Ls = 3,  
 alloc = c(0.5, 0, 0.5))  
> tn1 <- strata.LH(x = MRTS, CV = 0.1, Ls = 3,  
 alloc = c(0.5, 0, 0.5), takenone = 1)  
> tn0.5 <- strata.LH(x = MRTS, CV = 0.1, Ls = 3,  
 alloc = c(0.5, 0, 0.5), takenone = 1, bias.penalty = 0.5)   

The sample sizes n  for the three designs are given in 
Table 11. Including a take-none stratum with a full bias 
penalty reduces ,n  from 22 to 16; for this design the take-
none stratum accounts for 3% of the total of the X-variable. 
Reducing the biais penalty to =p 0.5 increases the size of 
the take-none stratum and reduces .n  Additional illus-
trations are given in Table 2 of Baillargeon and Rivest 
(2009). They show that the size of a take-none stratum 
typically decreases with the target RRMSE. For the MRTS 
example, the addition of a take-none stratum diminishes the 
n -value substantially while for others it does not change the 
design. 

 
Table 11 
Sample sizes for three optimal stratified designs for the MRTS 
population 
 

 takenone   0   1   1  
 bias.penalty   NA   1   0.5  

n    22   16   13  
% xT    0   3   9   

6. Conclusion  
The R-package stratification offers flexible methods for 

the construction of a stratified sampling design using a 
univariate stratification variable such as a measure of size in 
a business survey. Several methods are available to deter-
mine the stratum boundaries and the stratum sample sizes. 

stratification allows the investigation of features such as a 
take-all stratum, a take-none stratum, the extent of the 
discrepancy between X and Y, and a stratum specific non-
response.  
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7. Appendix  
7.1 More details on Kozak’s algorithm  

As described in Section 3.3 Kozak’s algorithm uses a 
random search. Besides decreasing the optimization crite-
rion, either the n -value or the RRMSE  of ,sy  stratification 
requires that the take-some strata contain at least minNh 
units and that they have positive sample sizes, for the 
new boundary to be admissible. The default is minNh=2. 
A non random, Kozak’s algorithm is also available with 
method="modified" in the algo.control argument. It 
tries all the possible changes at one iteration and picks the 
one that gives the largest drop of the optimization criterion. 
It is slower than Kozak’s algorithm without improving the 
detection of the global minimum of the optimization 
criterion. Therefore, it will not be discussed any further. 

To illustrate the complete enumeration of all possible 
solutions mentioned in Section 3.3, consider the USbanks 
data set. It contains 357 values, but only 200 unique values. 
If one wishes to stratify this population in two strata, only 

200 1
2 1
−
−

( )= 199 solutions are possible. The following command 
performs a complete enumeration of the possible solutions:  
> enum <- strata.LH(x = USbanks, CV = 0.05, Ls = 2,  
 alloc = c(0.5, 0, 0.5))   

These solutions, with their associated optimization crite-
ria value, can be found in enum$sol.detail. Only the 
solutions fulfilling the admissibility constraints mentioned 
above are included in enum$sol.detail. 

When running Kozak’s algorithm, the initial boundary 
values might fail to meet the admissibility constraints; the 
algorithm might not be able to move at all. In such a case, 
the initial boundaries are replaced by robust ones. The 
robust boundaries give an empty take-none stratum if such a 
stratum is requested, take-all strata as small as possible, and 
take-some strata with approximately the same number of 
unique X -values. 
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Consider once again the example of Section 3.2 with the 
UScities data set, where Kozak’s algorithm reached a 
local minimum with the default arguments. With geometric 
initial boundaries, Kozak’s algorithm converges rapidly to 
what appears to be a global minimum. 
 
> LH_init <- strata.LH(x = UScities, initbh = pop2$bh,  
 n = 100, Ls = 5, alloc = c(0.5, 0, 0.5), takeall = 0,  
 algo.control = list(rep = 1)) 
> LH_init$iter.detail 
 
 b1 b2 b3 b4 opti step iter run

1 18.5 33.5 59.5 107 0.01444981 0 0 1
2 20.5 33.5 59.5 107 0.01435576 2 2 1
3 19.5 33.5 59.5 107 0.01434272 -1 10 1
4 19.5 33.5 58.0 107 0.01432714 -1 12 1
5 19.5 31.5 58.0 107 0.01431013 -2 13 1
6 19.5 32.5 58.0 107 0.01430163 1 63 1
 
> LH_init$niter 
[1] 163  

The output element LH_init$iter.detail contains 
information about the initial boundaries and the 5 iterations 
with a change of boundaries only. A total of 163 iterations 
were needed for the algorithm to converge. The geometric 
initial boundaries are very close to the optimal solutions. A 
local minimum can also be avoided by changing some of 
the algorithm’s parameters. The following R-code allows 
larger steps (maxstep=20) and increases the maximal num-
ber of iterations (maxstill=1000) and the number of 
repetitions of the algorithm (rep=20).  
> LH_param <- strata.LH(x = UScities, n = 100, Ls = 5,  
 alloc = c(0.5, 0, 0.5), takeall = 0, algo.control = 
 list(maxstep = 20, maxstill = 1000, rep = 20))  

The results for the 20 repetitions are reported in 
LH_param$rep.detail and summarized in Table 12. The 

solution obtained with the geometric initial boundaries is 
reached 9 times out of 20. 

 
Table 12 
Solutions found by Kozak’s algorithm for 20 repetitions 
 

CV B1 B2 B3 B4 frequency
0.0143 19.50 32.50 58.00 107.00 9 
0.0167 16.50 23.50 37.50 78.00 5 
0.0167 15.50 22.50 35.50 73.00 6  
Figure 3 shows how larger steps help the algorithm to 

reach the global minimum (CV = 0.0143), compared to a 
run of the algorithm with the default arguments (dotted 
lines, CV = 0.0167).  
7.2 R package stratification summary table  

This appendix provides a quick reference for the R 
package stratification. Table 13 lists the five functions in 
stratification and their arguments. The following notes 
complete the table.  
(1) According to the general allocation scheme (Hidiroglou 
and Srinath 1993). The stratum sample sizes are propor-
tional to 31 2 22 2 .qq q

h h yhN Y S   
(2) The default value of initbh is the set of arithmetic 
starting points of Gunning and Horgan (2007), see Section 
3.3. If takenone=1 and initbh is of size Ls-1, the initial 
boundary of the take-none stratum is set to the first percent-
tile of X. If this first percentile is equal to the minimum 
value of X, this initial boundary would lead to an empty 
take-none stratum. In that case, the initial boundary of the 
take-none stratum is rather set to the second smallest value 
of X. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 3 Iterations histories for two runs of Kozak’s algorithm 
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(3) The elements to specify in the algo.control argument 
depend on the algorithm. The following table shows the 
elements used by each algorithm and their default values. 
See help(strata.LH) for a complete description of every 
element. 
 
Algorithm maxiter method minNh maxstep maxstill rep minsol

Sethi 500 - - - - - - 

Original Kozak 10,000 “original” 2 3 100 3 1,000 

Modified Kozak 3,000 “modified” 2 3 - - 1,000  
(4) The elements of the model.control argument depend 
on the model: 

• loglinear model with mortality: 
exp( log( ) )

with probability=
0 with probability 1

h

h

X
pY

p

α + +⎧
⎪
⎨
⎪ −⎩

beta epsilon

 

 

where (0, )Nepsilon sig2∼  is independent of .X  
The parameter hp  is specified through ph, ptakenone 
and pcertain. 

 
 

• heteroscedastic linear model : 

=Y X +beta epsilon  

where 

(0, ).N X gammaepsilon sig2∼  

• random replacement model: 

with probability 1
=

new with probability
X

Y
X

−⎧
⎨
⎩

epsilon

epsilon
 

where Xnew is a random variable independent of X with 
the same distribution as X.  

The following table presents model.control default values 
according to the model. 
 
model beta sig2 ph ptakenone pcertain gamma epsilon

"loglinear" 1 0 rep(1,Ls) 1 1 - - 

"linear" 1 0 - - - 0 - 

"random" - - - - - - 0 
 

 

 

 

 

 

Table 13 
R package stratification summary table 
 

argument St
ra
ta
.c
um
ro
ot
f 

St
ra
ta
.g
eo
 

St
ra
ta
.L
H 

St
ra
ta
.b
h 

Va
r.
st
ra
ta
 

description format default 

x •  •  •  •   stratification variable vector none (x is mandatory) 
n •  •  •  •   target total sample size scalar none (n or CV is mandatory) 
CV •  •  •  •   target CV or RRMSE scalar none (n or CV is mandatory) 
Ls •  •  •  •   number of sampled strata scalar 3 

alloc •  •  •  •   allocation specification (1) list (q1,q2,q3) where qi≥ 0 Neyman (q1=q3=0.5, q2=0) 
certain •  •  •  •   x–indices for units sampled with 

certainty 
vector NULL (no certainty stratum) 

nclass •      number of bins scalar min(10L, N) 
bh    •   strata boundaries vector none (bh is mandatory) 

takeall.adjust    •   indicator of adjustment for take-all 
strata 

True or False FALSE (no adjustment) 

takeall   •  •   number of take-all strata one of {0, 1,…, Ls − 1} 0 
initbh   •    initial strata boundaries (2) vector equidistant boundaries 
algo   •    algorithm identification "Kozak" or "Sethi" "Kozak" 

algo.control   •    algorithm’s parameters specification 
(3) 

list (maxiter, method, minNh, 
maxstep, maxstill, rep) 

depends on algo 

strata     •  stratification scheme strata object none (strata is mandatory) 
y     •  study variable vector NULL (model given instead) 

model •  •  •  •  •  model identification "none", "loglinear", 
"linear"* or "random"* → 

"none"  
(*unavailable with Sethi’s algo) 

model.control •  •  •  •  •  model’s parameter specification (4) list (beta, sig2, ph, 
ptakenone, gamma, epsilon) 

depends on model, but equivalent 
to model="none" 

rh •  •  •  •  •  anticipated response rates scalar or vector rep(1,Ls) or rh from strata 
rh.postcorr     •  indicator of posterior correction for 

non-response 
TRUE or FALSE FALSE (no correction) 

takenone   •  •   number of take-none strata 0 or 1 0 
bias.penalty   •  •   penalty for the bias scalar 1 
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